【五術堪輿學苑】

 找回密碼
 【立即註冊】
查看: 284|回復: 0
打印 上一主題 下一主題

【球階函數】

[複製鏈接]
跳轉到指定樓層
作者
發表於 2012-12-8 15:47:41 | 只看該作者 回帖獎勵 |倒序瀏覽 |閱讀模式

球階函數

 

sphericalharmonics

 

【辭書名稱】力學名詞辭典

 

在物理學中,當我們解拉普拉斯(Laplace)方程、黑姆荷茲(Helmholtz)氏經典波方程、或中心力場薛丁格(Schrödinger)波動方程時,拉普拉斯算子的角度有關的部分均為以下的形式:式中,θ及ф為球面座標的仰角及方位角。

 

上式方位角相關的解為:式中,m為整數。

 

而仰角相關的解為連帶的勒讓德(Legendre)函數。

 

如果將兩個解乘起來,並考慮到歸一性可得以下的形式:這個函數在球面上有正交歸一性,我們稱它為球諧函數。

 

所以拉普拉斯方程的任意解均可寫成球諧函數的和。

 

更因球諧函數是一個完備的正交函數組,所有在球面上定義的連續函數,都可以寫成這些球諧函數的和。

 

 

轉自:http://edic.nict.gov.tw/cgi-bin/tudic/gsweb.cgi?o=ddictionary

評分

參與人數 1金幣 +500 收起 理由
天梁 值得鼓勵。

查看全部評分

【自由發言誠可貴、言辭水準需更高、若有污衊髒言顯、術龍五術堪輿學苑、不歡迎的喲!】
回復

使用道具 舉報

QQ|【google翻譯】|【手機版】|【Archiver】|【五術堪輿學苑】 ( 皖ICP備11003170號 )

GMT+8, 2024-12-28 14:06 , Processed in 0.109375 second(s), 19 queries , Gzip On.

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回復 返回頂部 返回列表