【五術堪輿學苑】

 找回密碼
 【立即註冊】
查看: 460|回復: 0
打印 上一主題 下一主題

【特徵值】

[複製鏈接]
跳轉到指定樓層
作者
發表於 2012-11-22 05:05:40 | 只看該作者 回帖獎勵 |倒序瀏覽 |閱讀模式

特徵值

 

Eigenvalues

 

【辭書名稱】教育大辭書

 

假設有一個n×n的矩陣,並且也有一個純數(scalar)λ和一個1×n階的非零向量,共同滿足下列的恆等式:則λ該值稱作「特徵值」,該向量稱作「特徵向量」(eigenvector);

 

其中,λ值必定是下列多項式方程式(poly-nomialequation)的一個解或根(root):在n個向度的向量空間上的直線轉換,最多有n個不同的特徵值的解。

 

如果有某個基(basic)內含有特徵向量的話,則該直線轉換必定是可以化簡成對角線矩陣的矩陣式子。

 

特徵值又稱「愛根值」或「特徵根」(characteristicroot)、「潛在根」(latentroot)、「適當值」(propervalue),或「光譜值」(spectralvalue);

 

特徵向量又稱「愛根向量」或「特徵向量」、「潛在向量」(latentvector)、「適當向量」(propervector),或「光譜向量」(spectralvector)。

 

特徵值及特徵向量是一組配對的名詞,在多變量分析(multivariateanalysis)中,它們是資料分析的核心;

 

換句話說,多變量分析是建立在分析各式各樣的「特徵方程式」(characteristicequation)之特徵值及特徵向量上。

 

 

轉自:http://edic.nict.gov.tw/cgi-bin/tudic/gsweb.cgi?o=ddictionary

評分

參與人數 1金幣 +500 收起 理由
天梁 值得鼓勵。

查看全部評分

【自由發言誠可貴、言辭水準需更高、若有污衊髒言顯、術龍五術堪輿學苑、不歡迎的喲!】
回復

使用道具 舉報

QQ|【google翻譯】|【手機版】|【Archiver】|【五術堪輿學苑】 ( 皖ICP備11003170號 )

GMT+8, 2024-11-11 13:38 , Processed in 0.156250 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回復 返回頂部 返回列表