【複線性迴歸】 MultipleLinearRegression
【辭書名稱】教育大辭書
在多變量變項資料(multivariatedata)分析中,最常使用的預測方法是迴歸分析(regressionanalysis)法。
迴歸分析法又可以分成兩種:一為簡單迴歸分析(simpleregressionanalysis),另一為多元迴歸分析(multipleregressionanalysis)。
簡單迴歸分析是指以一個自變項預測一個依變項的迴歸分析法,因為所使用的迴歸方程式(regressionequation)的數學公式是以一次方程式來表示的,所以又稱作「簡單線性迴歸」(simplelinearregression);
而多元迴歸分析是指以多個(至少兩個以上)自變項預測一個依變項的迴歸分析法,因為所使用的迴歸方程式是以一次方的數學公式來表示,因此又稱為「複線性迴歸」。
這兩種迴歸分析的功用都是一樣的,不外乎是預測(prediction)、解釋(explanation),和控制(control)。
複線性迴歸的數學公式可以表示如下:意謂著聯合p個自變項X來預測或解釋依變項Y;
其中表示被預測值(predictedvalue),b0表示截距(intercept),b1……bp表示每個自變項的加權係數值,特別稱作「迴歸係數」(regressioncoefficients)。
迴歸分析的過程,便是運用最小平方法(leastsquare)來估計出這些迴歸係數和截距,使得聯合這p個自變項對依變項的解釋力達到最大,並以R2Y.X1X2…Xp符號來表示這項指標,特稱作「決定係數」(coefficientofdetermination)。
決定係數的意思即是「在依變項的總變異量中,可以被p個自變項聯合解釋的變異量百分比」;
這個百分比愈高,即表示預測的效果愈好。
因此,任何一次迴歸分析裡,研究者莫不期望能尋獲一條迴歸方程式(或稱作迴歸線或預測線),使得決定係數值愈大愈好。
複線性迴歸具有下列的基本假定:1.殘差值(residual)的分配具有獨立性(independence);
亦即,每個殘差值各自獨立,不相干擾。
2.殘差值的分配具有常態性(normality);
亦即,殘差值所構成的次數分配是呈常態分配(normaldistribution),其平均數為0,變異數為σ2。
3.殘差值的分配具有相同變異數(commonvariance);
亦即,每個殘差值所構成的次數分配都具有相同的變異數,這項假定稱作「等分散性」(homoscedasticity)。
4.自變項X與依變項Y之間,必須具有直線關係(linearrelationship)。
5.自變項X沒有測量誤差(measure-menterror)存在。
在進行複線性迴歸分析之前,必須先滿足上述的基本假定。
轉自:http://edic.nict.gov.tw/cgi-bin/tudic/gsweb.cgi?o=ddictionary
|