【五術堪輿學苑】

 找回密碼
 【立即註冊】
查看: 939|回復: 0
打印 上一主題 下一主題

【中華百科全書●科學●貝色函數】

[複製鏈接]
跳轉到指定樓層
作者
發表於 2012-12-27 17:38:33 | 只看該作者 回帖獎勵 |倒序瀏覽 |閱讀模式

中華百科全書●科學●貝色函數

 

貝色函數(BesselFunctions)首先是在研究平面運動的Kepler方程式中被提出來研究,而後在西元一八二四年被貝色(Bessel)予以有系統地研究。

 

將Helmholtz方程式△Ψ k2Ψ=0以圓柱座標為變數分離後得到Bessle’s微分方程式:(方程式1)。

 

此式有兩線性不相依的解:(方程式2)及(方程式3)分別稱為第一類及第二類的Hankel函數。

 

上式中L1為由(-π+0)+i∞到-0-i∞的一曲線,而L2為由+0-i∞到(π-0)+i∞的一曲線。

 

定義Jv(z)=(Hv(1)(z)+Hv(2)(z))/2,及Nv(z)=Yv(z)=(Hv(1)(z)-Hv(2)(z))/2i,分別稱為貝色函數及Neumann函數。

 

亦有稱Jv(z)為第一類的貝色函數,Nv(z)為第二類的貝色函數,Hv(z)為第三類的貝色函數。

 

Jv,Nv及Hv均滿足下列公式:(方程式4)。

 

一般而言,滿足上述兩公式的函數稱為圓柱函數。

 

任一圓柱函數Cv(z)均可表為Cv(z)=a1(v)Hv(1)(z)+a2(v)Hv(2)(z),式中a1(v)及a2(v)為對v為週期1的週期函數。

 

若v=n為一整數,則J-n(z)=(-1)nJn(z),N-n(z)=(-1)nNn(z)。

 

若v不為一整數,則Jv及J-v為不相依的函數。

 

此外,Jv(zeimπ)=eimvπsJv(z),J-v(zeimπ)=e-imvπsJ-v(z)。

 

若v=n為一整數,且Rez>0,則(方程式5),上式右邊的積分式稱為貝色積分。

 

貝色函數有下述重要公式:(方程式6)。

 

式中L為一由無窮遠點以幅角(Argument)-π出發,以正向圍繞原點之後,而以幅角π返回無窮遠點的一個周線(Contour)。

 

(林正英)

 

引用:http://ap6.pccu.edu.tw/Encyclopedia/data.asp?id=10195

評分

參與人數 1金幣 +500 收起 理由
天梁 值得鼓勵。

查看全部評分

【自由發言誠可貴、言辭水準需更高、若有污衊髒言顯、術龍五術堪輿學苑、不歡迎的喲!】
回復

使用道具 舉報

QQ|【google翻譯】|【手機版】|【Archiver】|【五術堪輿學苑】 ( 皖ICP備11003170號 )

GMT+8, 2024-11-15 06:30 , Processed in 0.093749 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回復 返回頂部 返回列表