【五術堪輿學苑】

 找回密碼
 【立即註冊】
查看: 878|回復: 0
打印 上一主題 下一主題

【逐次近似法】

[複製鏈接]
跳轉到指定樓層
作者
發表於 2012-12-8 17:39:44 | 只看該作者 回帖獎勵 |倒序瀏覽 |閱讀模式

逐次近似法

 

successiveapproximation

 

【辭書名稱】力學名詞辭典

 

在力學問題,正確解的狀況未知,或很難求得解析解,常採用逐次近似法來求近似解、或數值解,以結構力學為例,其處理步驟簡述如下:1.先假設一可能的撓度分佈(或截面力分佈)。

 

2.根據可能的撓度分佈(或截面力)與邊界條件算出截面力分佈(或撓度)。

 

3.由所得之截面力分佈(或撓度)與邊界條件可計算出較為改善的撓度分佈(或截面力)。

 

4.由3.計算所得結果為新的可能撓度分佈(或截面力),進行2,3步驟直到近似解改善的程度在所要求的精確度以內,即可停止。

 

以求一簡支梁的臨界負載(criticalload)為例,若梁長ℓ,斷面慣性矩I,材料彈性係數E,承受軸向力P,以逐次近似法求其臨界負載Pcr。

 

梁的兩端在垂直方向簡支,先設梁的撓度為拋物線分佈,中間最大撓度為δ1:y1=(4δ1/ℓ)x(ℓ-x)在此撓度之下,梁的力矩分佈為:M1(x)=Py1(x)利用此力矩分佈可得梁的撓度分佈為:在x=ℓ/2處之最大撓度δ2為:δ2=5Pℓ2δ1/48EI令δ1=δ2=5Pcrℓ2δ1/48EI,則可得:Pcr=48EI/5ℓ2=(9.6/ℓ2)EI而Pcr的正確解為:Pcr=π2EI/ℓ2。

 

其誤差為2.7%,如令y2為新的可能撓度分佈,則新力矩分佈M2=Py2,依此力矩分佈可得新撓度分佈:在x=ℓ/2處,δ3=61Pℓ2δ2/600EI。

 

令δ2=δ3=61Pℓ2δ2/600EI可得:Pcr=9.836EI/ℓ2誤差改進至只有0.3%。

 

 

轉自:http://edic.nict.gov.tw/cgi-bin/tudic/gsweb.cgi?o=ddictionary

評分

參與人數 1金幣 +500 收起 理由
天梁 值得鼓勵。

查看全部評分

【自由發言誠可貴、言辭水準需更高、若有污衊髒言顯、術龍五術堪輿學苑、不歡迎的喲!】
回復

使用道具 舉報

QQ|【google翻譯】|【手機版】|【Archiver】|【五術堪輿學苑】 ( 皖ICP備11003170號 )

GMT+8, 2024-12-28 13:37 , Processed in 0.078125 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回復 返回頂部 返回列表