【五術堪輿學苑】

 找回密碼
 【立即註冊】
查看: 202|回復: 0
打印 上一主題 下一主題

【線性結構關係模式】

[複製鏈接]
跳轉到指定樓層
作者
發表於 2012-11-23 05:43:24 | 只看該作者 回帖獎勵 |倒序瀏覽 |閱讀模式

線性結構關係模式

 

LinearStructuralRelationsModel

 

【辭書名稱】教育大辭書

 

線性結構關係模式是結合因素模式(factormodel)及結構方程模式(structuralequationmodel)的一種統計模式。

 

其目的主要在驗證建構(construct)間的理論關係。

 

由於模式設定上相當具有彈性,在實證應用上相當廣泛。

 

理論上,一般皆將模式寫為:(測量模式,處理觀察變項與潛在變項之間的關係)(結構模式,處理潛在變項之間的結構關係)式中,x與y表示測量指標向量;

 

ξ及η表示x及y之因素向量;

 

Λx,和Λy則是因素係數矩陣;

 

B及Γ表示結構係數矩陣;

 

δ與ε是測量誤差向量;

 

ζ是結構誤差向量。

 

這個模式包含許多特殊子模式,如因素分析模式、路徑模式、多元迴歸模式、結構方程模式等等;

 

其中,因素分析模式帶有潛在變項,其餘三種模式則皆處理觀察變項之間的關係,不假定潛在變項的存在。

 

參數估計上,一般而言,有未加權最小平方法(unweightedleastsquare,ULS)、一般化最小平方法(generalizedleastsquare,GLS)、最大概率法(maximumlikelihood,ML)及加權最小平方法(weightedleastsquare,WLS)等四種。

 

其中,最常用的是ML及GLS,但這兩種估計法需假定常態母群分布。

 

ULS及WLS雖然不假定母群為常態,但卻需要較大的樣本。

 

評估有推論性統計量及描述性統計量等兩類指標。

 

前者是樣本數減1與配適值的乘積,虛無假設下,這個乘積近似卡方分布。

 

但要注意的是,當分析的矩陣不是共變矩陣時,這乘積並不近似卡方分布。

 

而且,如果母群峰度過高,ML及GLS產生的乘積亦不近似卡方分布。

 

此外,推論性統計量是樣本大小的函數,故實務上常同時輔以描述性統計量進行評估。

 

常見的描述統計量有配適度指標(goodnessoffitindex,GFI)、調整配適度指標(adjustedgoodnessoffitindex,AGFI)及均方誤差根(rootofmeanofsquareerror,RMSE)等。

 

由於線性結構關係模式的應用電腦套裝程式當中,以尤拉斯哥(Jöreskog)及索本(Sörbom)所發展的LISREL最為流行,故線性結構關係模式又常被稱為「LISREL模式」,但實際上可用的電腦程式不止於此,班特勒(Bentler)所發展的EQS就是另外一例。

 

 

轉自:http://edic.nict.gov.tw/cgi-bin/tudic/gsweb.cgi?o=ddictionary

評分

參與人數 1金幣 +500 收起 理由
天梁 值得鼓勵。

查看全部評分

【自由發言誠可貴、言辭水準需更高、若有污衊髒言顯、術龍五術堪輿學苑、不歡迎的喲!】
回復

使用道具 舉報

QQ|【google翻譯】|【手機版】|【Archiver】|【五術堪輿學苑】 ( 皖ICP備11003170號 )

GMT+8, 2024-11-10 20:56 , Processed in 0.140626 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回復 返回頂部 返回列表