【五術堪輿學苑】

標題: 【複核驗證法;效度複核】 [打印本頁]

作者: 豐碩    時間: 2012-11-23 05:57
標題: 【複核驗證法;效度複核】

複核驗證法;效度複核

 

Cross-Validation

 

【辭書名稱】教育大辭書

 

在多元迴歸分析中,研究者常會使用多種指標來協助選擇一個最佳的迴歸模式,這些指標的使用標準包括:1.R2值(即決定係數值)最大;

 

2.S2值(即殘差值的變異數)最小;

 

3.預測值的預測區間最窄;

 

4.Cp最小;

 

5.PRESS值最小。

 

當研究者參考這些指標選出一個最佳的迴歸模式後,並無法驗證該模式即為具最佳預測效力的模式。

 

為了確認該模式的效度(validaty)問題,以便未來據以進行預測及降低預測的誤差,研究者通常有兩種方法可行:1.重新收集另一筆資料,並以該模式來預測新樣本的依變項值,並求出預測誤差(即新樣本依變項上之觀察值與依該模式預測出的預測值之間的差值)的變異數及考驗其顯著性,以確認該模式的預測效度。

 

但由於收集一筆新樣本資料,往往不是那麼容易或負擔得起,因此,這種作法較不實際,殊少被研究者使用。

 

2.使用折半樣本(hold-outsample)(即以隨機方式將原來的分析樣本分成兩半),以其中一半的樣本來建立最佳模式,並拿該模式來預測另一半樣本,看看預測誤差的變異數是否達顯著水準,以判定該模式的預測效度。

 

像上述第二種作法,以一半樣本來建立模式,並以另一半樣本來驗證該模式的效度,即稱作「複核驗證法」。

 

測驗編製者為分析測驗與效標的真正關係,排除機率因素,通常會運用「效度複核」重新驗證測驗的鑑別力。

 

另致度複核係指測驗編製者選取新受試者,重新驗證所編測驗題目的鑑別力,並分析其與原先受試者所得結果的差異程度。

 

若差異甚微,表示測驗可用於新受試者或受試者所屬的母群體,更可說明測驗題目與效標的關係是真實的,而非機率造成的。

 

若差異甚大,顯示測驗題目與效標的關係可能是非機率造成的,測驗編製者必須重新編擬一些與效標相關的題目,或重新編擬新的測驗。

 

由此可見,以其他群體來進行效度複核,主要作用在於驗證;

 

若兩者結果差異甚大,測驗編製者必須重編測驗題目。

 

進行效度複核的重點在選取新受試者重新驗證,若選取受試者不適合,則必然產生甚大誤差。

 

選取新的受試者必須依據效度複核的目的,選取具代表性的夠大樣本,方可減少誤差。

 

 

轉自:http://edic.nict.gov.tw/cgi-bin/tudic/gsweb.cgi?o=ddictionary




歡迎光臨 【五術堪輿學苑】 (http://aa.wsky.ink/) Powered by Discuz! X3.1