【中華百科全書●科學●精細結構】
<P align=center><STRONG><FONT size=5>【<FONT color=red>中華百科全書●科學●精細結構</FONT>】</FONT></STRONG></P> <P><STRONG>波爾(Bohr)的原子模型:(見方程式圖1)其中:En為原子所含的能量z為原子量e為電子電量為蒲朗克常數n為量子數m為原子質量角動量的量子化使原子能量也連帶地同時量子化。</STRONG></P><P><STRONG></STRONG> </P>
<P><STRONG>這個式子說明了原子能階的觀念,當電子在原子產生躍遷時,即會激發分子的振動及轉動能階的變化。</STRONG></P>
<P><STRONG></STRONG> </P>
<P><STRONG>波爾理論只有在非相對論的狀況下才正確。</STRONG></P>
<P><STRONG></STRONG> </P>
<P><STRONG>索末菲(Sommerfeld)在運用威爾森─索末非的量子化定則以解釋電子可以在氫原子中做橢圓運動的過程中,加上了相對論的修正。</STRONG></P>
<P><STRONG></STRONG> </P>
<P><STRONG>結果在簡併的軌道(DegenerateOrbits;</STRONG></P>
<P><STRONG></STRONG> </P>
<P><STRONG>對應於同樣量子數n的不同軌道,具有相同的能量,稱此軌道為簡併的)中,就會由於相對論的修正而呈現分離的狀態,也就是說,不同的橢圓軌道(以nθ表示),雖然在同樣的n之下,會有一些能量的差別。</STRONG></P>
<P><STRONG></STRONG> </P>
<P><STRONG>我們以氫原子為例,氫原子中電子速度V/C約為10-2左右,而由此速度,所發生電子質量的修正而導致其原子能量的修正的數量級應該是(見方程式圖2),等於10-4,因此這些簡併狀態就會有相當於這個數量級的分離。</STRONG></P>
<P><STRONG></STRONG> </P>
<P><STRONG>精細結構(FineStructures)就是在此狀況下,原子光譜分裂成的光譜線。</STRONG></P>
<P><STRONG></STRONG> </P>
<P><STRONG>當高斯密及烏蘭貝克(Goudsmit&Uhlenbeck)首次提出電子軌道有自旋現象後,他們一直試圖要解釋為何在氫及鹵族元素的某些光譜線,是由一對極為接近的譜線所組成,至此獲得了結論。</STRONG></P>
<P><STRONG></STRONG> </P>
<P><STRONG>精細結構存在所有原子中,只有在高鑑別率的分光儀器中才能觀察得到。</STRONG></P>
<P><STRONG></STRONG> </P>
<P><STRONG>它使得原子的總能量式得到下列修正:(見方程式圖3)其中α≡e2/c,稱為精細結構常數(FineStructureConstant),原子的能階,就不再只是和n有關了,還和nθ有關。</STRONG></P>
<P><STRONG></STRONG> </P>
<P><STRONG>(吳義雄)</STRONG></P>
<P><STRONG></STRONG> </P>引用:http://ap6.pccu.edu.tw/Encyclopedia/data.asp?id=9166
頁:
[1]