【史托克斯流函數】
<P align=center><STRONG><FONT size=5>【<FONT color=red>史托克斯流函數</FONT>】</FONT></STRONG></P> <P><STRONG>Stokesstreamfunction</STRONG></P><P><STRONG></STRONG> </P>
<P><STRONG>【辭書名稱】力學名詞辭典</STRONG></P>
<P><STRONG></STRONG> </P>
<P><STRONG>在不可壓縮的軸對稱流體流動中,由連續方程式所推導而得的流函數,由史托克斯(G.G.Stokes)首先引用而得名。</STRONG></P>
<P><STRONG></STRONG> </P>
<P><STRONG>對圓柱座標系(r,θ,z)而言,流體速度分量Ur、Uz與史托克斯流函數Ψ的關係為:而對球面座標系(r,θ,Ψ)而言,流體之速度分量Ur,Uθ與Ψ的關係為:</STRONG> </P>轉自:http://edic.nict.gov.tw/cgi-bin/tudic/gsweb.cgi?o=ddictionary
頁:
[1]